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Abstract. It is shown that classical Liouville dynamics are recovered from quantum 
mechanically suppressed chaotic motion by introducing a measurement process into the 
pure dynamics. Such a process is a quantum non-demolition measurement for information 
on the phase space probability distribution. A fully quantum dynamical model of such a 
process, which is based on a von Neumann’s lattice basis, is proposed. The quantum 
fluctuation of the measurement system releases the host system from a quantum suppression, 
thereby restoring an entire classical motion in the phase space. 

1. Introduction 

In chaotic behaviours the discrepancy between quantum and classical dynamics seems 
to be quite striking. One of the characteristics of this discrepancy is the shortness of 
the timescale for which the semiclassical description of dynamics holds correct. 

Let us denote such a timescale by t * .  First we estimate t* for non-chaotic integrable 
systems. We assume that the system is in a state with minimal quantum uncertainty 
i.e. A p  - A q  - 6, where p and q are momentum and position, respectively, and h is 
the Planck constant. Classically the error in the initial state is amplified in proportion 
to time. Since the semiclassical description breaks down when the quantum fluctuation 
becomes macroscopic, we can estimate t* to be h-l”. This is quite a long timescale 
i.e. t* - l O I 3  s for h - (in CGS units). This is not, however, the case at all for 
chaotic systems. For the chaotic system a small error is ‘expanded exponentially in 
time with Lyapunov exponent a, and the quantum fluctuation due to the initial 
uncertainty is amplified as Jf; exp(at). At t* - (1/2a)  log( 1/ h )  the semiclassical 
description breaks down. This timescale is extremely short since it is estimated to be 
only a few tens of seconds! 

Beyond t* the quantum dynamics reveals its own nature: Chirikov et a1 (1981) 
conjectured that t* is the timescale beyond which the chaotic diffusion becomes 
suppressed (Casati et a1 1979). Indeed at t* a transition takes place in the morphology 
of wavefunctions (Berry et a1 1979), and the quantal orbital instability is observed up 
to a similar (but much longer, in general) timescale (Toda and Ikeda 1987a). Therefore, 
t * characterises the timescale beyond which the quantum nature suppresses chaotic 
behaviour and makes the system ‘anomalously’ stable (Shepelyansky 1983, Casati et 
a1 1986). However the timescale r* is too short from the macroscopic point of view. 
It is unbelievable that in such a short timescale chaotic behaviour is destabilised by 
quantum effects. It should be shown that there exists a certain generic mechanism 
which destroys the quantum suppression and revives the classical chaotic dynamics. 
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Recently Shepelyansky (1983) and Ott et a1 (1984) have pointed out that the classical 
chaotic diffusion is recovered by applying small dynamical perturbations. This 
phenomenon is quite interesting in view of the quantum-classical correspondence. 
Their studies, however, are concerned only with the recovery of chaotic diffusion in 
momentum space. What we would like to elucidate is how the classical chaotic motion 
is recovered entirely in the phase space where the information necessary and sufficient 
for describing the classical motion is provided. 

The aim of the present paper is to show that the quantum suppression of chaotic 
motion is removed and classical motion is recovered in the phase space quite naturally 
by introducing a process of measurement. Such a process is a quantum non-demolition 
measurement for physical quantities needed for describing the classical dynamics. To 
be concrete, in the present paper we specifically consider the chaotic diffusion 
phenomenon extensively studied by Casati et a1 (1979) because it most definitely 
manifests the discrepancy between the quantum and the classical dynamics. However, 
we believe that the results mentioned below would be quite general. 

The outline of the present paper is as follows. In § 2 we reconfirm numerically the 
existence of an anomalous timescale similar to t* in the chaotic diffusion phenomenon. 
We consider the significance of such a timescale by observing the time evolution of 
the wavepacket in the phase space. On the basis of such an observation we propose 
in § 3 an ‘ideal’ perturbation process which may help the system to restore the 
semiclassical dynamics in the phase space. Further, we show that such a process can 
be interpreted as a back-action due to a measurement of the information on the 
probability distribution in the phase space. A fully quantum dynamical model of 
measurement process which gives rise to the same effect as the ‘ideal’ perturbation is 
proposed. In 0 4, we investigate numerically the effect of the ideal perturbation process. 
Various evidence showing that the evolution process into which the measurement 
process is incorporated restores classical Liouville dynamics in the phase space is 
presented. In § 5 we discuss the significance of incorporating the measurement process 
into the whole quantum dynamics. 

2. Existence of an anomalous timescale 

The system we consider in the present paper is the kicked rotor described by the 
Hamiltonian 

+X 

H = ; $ ’ + K  S ( t - n ) V ( e * )  
n = --a, 

where p* = -iha/ae* and ê  are the momentum and position operators, respectively, and 
V(e^) is a periodic function with period 27r. Here, we choose 

V (  e*) = cos d (2.2) 

e,+, = el + p I + ,  P,+l = P , - K V ’ ( e l )  (2.3) 

The classical motion of (1) is described by the well known standard mapping: 

where 8, and pI are the angle and momentum, respectively, at the tth step. The motion 
described by the mapping rule (2.3) becomes globally chaotic as the parameter K 
exceeds the critical value K ,  = 0.971 . . . , and a diffusion occurs across the momentum 
space (Chirikov 1979, Greene 1979). Hence the second-order moment M of momentum 
increases linearly in time, i.e. M (( p - ( p ) ) ’ )  = DCLtr where DcL is the classical 
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diffusion constant. In quantum dynamics an iteration corresponding to the mapping 
(2.1) is achieved by operating the unitary operator 

(2.4) 

on the wavefunction + ( e * ) .  Here g is the time-ordering operator and the periodic 
boundary condition 

+ ( e *  + 27r) = +( e*) 
is assumed for + ( e * ) .  

Quantal motion also exhibits a diffusion phenomenon. However, the time regime 
in which the diffusive motion is observed is quite restricted. In figure l ( a )  we show 
a typical behaviour of M obtained starting from a momentum eigenstate. There are 
three time regimes. In the first regime t < T, the second-order moment M increases 
in agreement with the classical chaotic diffusion. A significant deviation from the 
classical motion emerges in the second regime T, < t < T,, and M reaches a saturation 
level in the third regime t > T,. The origin of saturation in the third regime is fully 
quantum mechanical, being understood in connection with Anderson localisation 
(Fishman et al 1982). The Anderson localisation is quite unstable against time- 
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Figure 1. ( a )  Time evolution of the second-order moment M for classical and quantum 
kicked rotors. (6 )  Dependence of the timescales T, and f* upon h - ' .  K =2.0. 
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dependent perturbation (Thouless 1977). This provides an important implication for 
the release of the system from the Anderson localisation. Indeed, the classical diffusion 
can be recovered by applying an appropriate external noise (Ott et a1 1984). However, 
it is not very clear whether such a perturbation restores the classical chaotic dynamics 
in the phase space or not. As will be noted later, a recovery of the classical-like 
diffusion does not necessarily mean a restoration of the classical phase space motion. 

In view of quantum-classical correspondence, there is no problem for the second 
timescale T, ,  because it goes to infinity more promptly than h-’ as h approaches zero 
(Chirikov et a1 1981, Sheplyansky 1983). The problem is the first timescale T,: T, also 
increases as h goes to zero, but its increase is too slow. In figure l (b )  we show how 
the numerically computed T, depends upon h. It seems to have quite similar depen- 
dence on h as does r*, i.e. T,o:log 1/h. Existence of such behaviour is confirmed up 
to h - loe3 but there is, of course, no evidence that such behaviour persists up to the 
actual value h - However, if this is the case, there appears a paradoxical fact: 
T, is as short as t *  - a  few tens of seconds ( h  - and this is a timescale on which 
we believe that the classical description works well. On such a classical timescale we 
could observe the quantum suppression of chaotic diffusion! The implausibility of the 
paradox implies that there exists a serious gap between the classical chaotic dynamics 
and the quantal chaotic dynamics. 

The first timescale T, has a quite similar dependence upon h as does t* ,  but the 
former is more than 10 times longer than the latter. We first elucidate the meaning of 
T,, which may provide some hints on a possible mechanism to be introduced for 
removing the discrepancy between the quantal dynamics and the classical one. To this 
end we observe the motion of the wavefunction mapped onto the c-number phase 
space (Takahashi and Saito 1985). Let us introduce a phase space representation 
(quasiprobability) of the density operator p = I $ ( t ) ) ( $ ( t ) l  which is defined by 

Q(4 P, t )  = ((6, plp(t)le, P)) (2.5) 
wpere I0,p)) is the coherent state with respect to the annihilation operator 2 =  
( 0  + ip̂ )/m generated from the vacuum state /vac) of 2: 

le, p ) )  = exp{(e +ip)s+/JZi;- ( e  -ip)a*/JZi;}lvac). 

Q(e,  p ,  t )  is a quantal counterpart of the classical probability distribution function 
defined in the phase space. We observe the motion of a contour line Z, of Q( e, p ,  t).  
Zp is chosen in such a way that the total probability in the region up enclosed by Z, 
is a constant value P ( S 1 )  (Toda and Ikeda 1987a). A typical example showing a time 
evolution of contour lines of Q( 8, p ,  t )  is shown in figure 2. We start with a coherent 
state localised in the phase space (figure 2(a)).  As time elapses, the contour lines are 
stretched and folded in a quite similar manner as we often experience in classical 
chaotic dynamics (figure 2( b)). In classical chaotic dynamics the stretching and folding 
operations are repeated without limit, and arbitrary fine structures can be formed in 
the phase space. As a result, some of the stretched parts are pushed out of the initial 
region and eventually give rise to the classical diffusion in momentum space. The 
quantum time evolution is, however, quite different from the classical evolution. When 
the stretched and folded structure is formed in the phase space, a quantum interference 
between portions of the wavepacket on nearby branches takes place. This interference 
forms lumps of size O(&) (Toda and Ikeda 1987b) (see figure 2(c)), which destroy 
the finely stretched and folded structure needed for pushing the probability out of the 
region in which the system is initially prepared (figure 2(d)).  This is the mechanism 
of quantum suppression of diffusion. 
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Figure 2. Time evolution of the quasiprobability distribution function Q(8, p ,  t ) ;  ( a )  t = 1, 
( b )  1 = 4 , ( c )  f = 7 , ( d )  t = 1 3 , w h e r e K = 2 . 0 .  

M Ic lassical l  30 - 
M 

20 - 

10 - 

50 100 
t 

Figure 3. Relation between the time evolution of M and Sp. Here Sp is the area of the 
region enclosed by the contour curve of Q( 8, p ,  t )  (see text). 

The relationship between the quantum interference and the suppression of diffusion 
is more directly seen in figure 3. In this figure we show the evolution of the area Sp 
of the region vP in comparison with the evolution of the second-order moment M. In 
classical chaotic dynamics, the length of a region in the phase space increases as 
L - ea ' (a :  Lyapunov exponent), whereas the thickness of the region decreases like 
1 -e-"' because the area of the region is conserved. In quantum dynamics, however, 
there is no scale less than v%, and the thickness 1 ceases to decrease at v%. Thenceforth, 
the area Sp of the region up enclosed by a contour line Z p  increases in proportion to 
IL - f i  ea'. Thus crp soon fulfils the available region in the phase space. As shown 
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in figure 3, it is just at this time that the mechanism of the quantum suppression begins 
to work significantly?. 

At T, the wavepacket which has been stretched and folded in the phase space is 
‘packed like sardines’ in the available region in the phase space. Everywhere in this 
region interference between neighbouring parts of the stretched and folded wavepacket 
occurs and a systematic emission of probability out of this region is inhibited. Therefore, 
if we introduce some natural mechanism which destroys the quantum coherence 
everywhere in the phase space, the quantum interference is suppressed and a classical 
chaotic motion in the phase space may be restored. This will be discussed in the next 
section. 

3. Phase randomisation on the von Neumann lattice measurement of phase space 
information 

Physically the semiclassical limit means not only to take the mathematical limit h + 0. 
It also practically means to make the motion contributing to the chaotic behaviour 
macroscopic. In a macroscopic system, a certain collective mode (e.g. the centre-of- 
mass coordinates) will contribute to the macroscopic chaotic motion. However, there 
exist a number of degrees of freedom which do not contribute to the macroscopic 
behaviour but disturb the macroscopic chaotic motion at least on microscopic scales. 
Such a microscopic Brownian motion leads to a diffusion of macrovariables in the 
phase space. Here we discuss the effect of microscopic Brownian motion briefly. Let 
T M  be the characteristic timescale of macrovariables ( T M  = 1 for our kicked rotor). 
‘Microscopic’ means that the characteristic lengths of diffusion during T M ,  which we 
denote by AB( T ~ )  and Ap( T M )  for 8 and p ,  respectively, are of microscopic sizes. Once 
microscopic diffusion occurs, its reaction destroys the coherence of the wavefunction 
on the scales AB,- h / A p ( ~ , )  and Ap,- h / A B ( T M )  respectively, in the phase space. 
Such a mechanism may destroy the quantum interference developed by quantum 
‘chaotic’ dynamics everywhere in the available region in the phase space, and it may 
recover the classical chaotic dynamics, if both AB, and Ap, may be made microscopic. 
Model processes describing microscopic Brownian motion mentioned above can 
actually be constructed. In the present paper, however, we will introduce a more 
‘idealised’ process. By ‘ideal’ we mean that the process destroys the coherence of the 
wavefunction everywhere in the phase space while keeping the lengths of diffusion 
within the minimum possible scales, i.e. AO( TM) - Ap( T ~ )  - 6. Such a process breaks 
the phase space up into minimum uncertainty cells of size A B , - A p , - f i  between 
which no phase correlation exists. 

Here we introduce an ‘ideal’ process which we call the phase randomisation on 
the von Neumann lattice. The physical significance of the model process will be 
discussed in detail in the latter half of this section. This process is described by using 
a complete set of basis functions, each of which is localised inside of a cell of the von 
Neumann lattice (VNL) (von Neumann 1932), that is a square lattice in the phase space 
with cell size d% ( h  = 2 h ) .  Let le,, p m )  be a basis localised in a lattice cell centred at 
( B , , p , )  = (& ( l + i ) ,  & (m+4)) (1 ,  m: integers) and assume the set { l B , , p m ) }  to be 
complete and orthogonal. Then the ‘ideal’ process is defined by the unitary transforma- 

t Fishman et a/ (1987) predicted another dependence of T, on h, i.e. T , a  t ~ - ‘ ’ ~ (  y - 3.0). However, their 
prediction and the physical picture behind it are applicable only in the vicinity of K = K , .  
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where the perturbation strength vlmr is a random variable uncorrelated at different sites 
as well as at different steps, and it is characterised by the statistical average (( vlm,vlrm8rt)) = 
S I I C S m m & , ~ * .  Von Neumann first proposed a set of displaced coherent states localised 
at (e,, p m )  as the basis function IO,, pm). This set of basis functions is complete, but 
unfortunately it is not orthogonal. A desired complete orthogonal set can be constructed 
by using an ‘Anderson localisation technique’ in the phase space. However, the 
following complete orthogonal basis is sufficient for practical purposes: 

k = m L + I  

where L is an integer satisfying the condition ( ~ T / L ) ~ =  h and Ik) = exp(ikf?)/fi (k: 
integer) is the eigenfunction of $. We show in figure 4 the contour plot of the 
quasiprobability distribution function for the von Neumann lattice (VNL) basis (3.2). 
Certainly each of these bases is localised inside a VNL cell. 

P 

e 
Figure 4. Contour plots of the quasiprobability distribution function for the V N L  basis 
states defined by (3.2).  

The VNL basis can be looked upon as the fundamental basis for a semiclassical 
simultaneous measurement of momentum and position. Indeed, using the VNL basis 
we can construct approximate position and momentum operators which commute with 
each other: 

e’= ell e/ 7 p m  )(e, 9 P m  I 
Im 

P’ E 1 pmIec, p m ) ( e i ,  PmI. 
/m 
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Since the VNL bases are localised in a region of size f i  in the phase space, they 
approximate the true position and momentum operators e  ̂ and p  ̂ to within an accuracy 
of O ( f l ) .  We can thus in principle do an approximate simultaneous measurement 
on the basis of the VNL basis. Therefore, the VNL basis is a natural basis set for 
elucidating the relationship between the classical dynamics and the quantal dynamics 
by incorporating the semiclassical simultaneous measurement processes. 

In the following, we will show that the phase randomisation on the VNL described 
by (3.1) can be interpreted as a back-action due to a measurement of information on 
the probability distribution in the phase space. Based on the VNL basis we can construct 
a fully quantum dynamical model of measurement process as explained below. 

(1) The measurement system is composed of a number of groups of ‘atoms’. The 
‘atoms’ are excited in interaction with the host system. We can read out the information 
on the local probability distribution in the phase space of the host system from the 
total number of excited atoms in a specific group. 

(2) We can count the total number of excited atoms belonging to each group. An 
‘atom’ is modelled by a two-level system having a ground state I + )  and an excited 
state 1 -). 

(3 )  The phase space of the host system is decomposed into coarse-grained domains 
of almost the same semimacroscopic size, and the system interacts selectively with a 
specific group (say a )  of atoms when the system is in a coarse-grained domain (say 
Da). Each of the groups of ‘atoms’ has a one-to-one correspondence with each of the 
coarse-grained domains in the phase space of the host system. It is desired that the 
measurement process do not disturb the probability distribution itself; in other words, 
the measurement process is required to be a quantum non-demolition measurement 
for the local probability distribution in the phase space. This requirement restricts the 
form of interaction between the ‘atoms’ and the host system. A plausible model of 
the interaction Hamiltonian is 

L1 

where I??’ stands for the collective creation operator of the two level atoms in the 
group a :  

= I - -I- HC. 

 xi.^) i,s the Pauli spin matrix representing the ith atom in the group a. On the other 
hand A ( u )  is the projection operator of the host system, i.e. 

5‘”) is the coupling constant between the host system and the ‘atoms’. It is easy to see 
that the interaction does not change the local probability distribution in the phase 

(4) The ‘atoms’ are initially all in the ground states. They interact with the host 
system during a very short finite period T. After the interaction we can read out the 
information on the local probability distribution in the phase space. We assume that 

space, i.e. I(@/, pml$)12. 
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T is so short that the evolution of host system by its own dynamics can be neglected. 
Then the final state of the composed host + measurement (='atoms') system after the 
interaction is described by the S matrix: 

iH, T 
S = exp-- h 

(3.6) 

where r '")T/h .  Let t,bi be the initial state before the measurement is done: 

+i=C C / m I e / , P m > O n  l - ) ( i , u ) *  (3.7) 
Im u,i 

Then the total number of excited 'atoms' in the group a is easily computed: 

where Nu is the total number atoms in the group a. Thus we can read out the 
coarse-grained probability distribution in the phase space X(e,,p,)E D m  IC,, 1'. 

( 5 )  If we wish to make successive measurements in an appropriate interval, a new 
measurement system is prepared each time a new measurement is done. 

Our process does not change the probability at any VNL lattice cell, i.e. IC,,,,/'. 
Instead, it greatly disturbs the phase information of the complex probability amplitude. 
Let e,,,, be the probability amplitude of the final state, i.e. cIm = (eI,pml+,-). Then we 
obtain 

where alm denotes the domain to which :he VNL state ( I ,  m )  belongs. The phase factor 
exp[-iO("'R~'] contains the operator R?', and a fully quantum analysis is required 
for examining its effect. 

We introduce the creation and annihilation operators 

To simplify the problem, we assume that the total number of excited 'atoms' is much 
smaller than the total number of 'atoms', i.e. Mu << Nu. Then the commutation relation 

(3.11) 

is approximated by 1, and 8, and k: can be regarded as boson annihilation and 
creation operators. Hence the ground state IIf*=., I is the vacuum state Ivac), of 
8, and 

1 " 
Nu i = l  

6;tI =- C (I - ) ( i ,u ) ( - I ( i ,u ) - I  + > ( i , u ) ( +  I(i.u)) 

" 
exp(-ie'*)R?)) n 1 -)(,,,, = exp - i5'")(iu + i;t)lvac), 

is no more than the coherent state of the boson operator a*,, where 

(3.12) 
i = l  

e'-'-= Tl'"'- /h.  
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We evolve the host system by its own dynamics by inserting measurement processes 
in appropriate time intervals. Assume that the evolution of the host system by its own 
dynamics is described by the unitary matrix V such as U (or its product). The tth 
step complex probability amplitude is obtained iteratively: 

(3.13) 

Here i stands for a VNL state specified by (I, m). We insert measurements between 
such pure evolutions and examine their effect on the whole dynamics. For the sake 
of simplicity we first consider a single step of measurement followed by a pure evolution 
process. After a single step evolution the ii' component of the density operator for 
the host plus measurement system is 

C,( t )  = VI(  1 - 1 )  C,( t - 1). 
J 

c, ( 1  ) c3 1) 

=E VV(0) V I  (O)*CJ(O)C,*(o)l - i P J ' ) ) , ,  
JJ 

(3.14) 

where cyj indicates the group of 'atoms' which interact with the domain D,, containing 
the state j ,  and [A)), is the coherent state exp( Ai?: - A * h a ) /  U), of the boson operator i?,. 

Now we take the partial trace with respect to all the states of 'atoms'. Since 

For simplicity we have assumed all 6, are equal to 6 and used the formula: 

((A [vac)) = exp (- !$) 

(3.15) 

(3.16) 

(3.17) 

Extension to a multiple-step process is straightforward because at each step the host 
system interacts with a renewed measurement system. Equation (3.16) means that a 
time-evolved behaviour can be made up by collecting all the sample processes, each 
of which is generated by the following successive transformations. 

(1)  Multiply by the random phase factor: 

C i ( r - l )  = e i u ~ ~ - " c i ( t - l ) ,  

( 2 )  Evolve the host system according to its own dynamics: 

C , ( t ) = E  v i J ( t - l ) c j ( t - l ) .  
J 

(3.18,) 

(3.18b) 
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The first process corresponds to the back-action due to the measurement process. After 
repeating these steps we obtain C i ( t ) ,  which is a functional of random variables 
{vbp'} . . . {vh'-"}. We can compute the ii' component of the density operator of the 
host system by averaging over the random variables { v',)}s=,, , , f- l  with the Gaussian 
statistical weight: 

(3.19) 

The stochastic process ( 3 . 1 8 ~ )  agrees entirely with the phase randomisation on the 
VNL if 0, is replaced by the VNL cell. Thus the phase randomisation on the VNL 

represents a sample process describing a back-action due to a measurement of the 
phase space probability distribution. The phase v'," can be interpreted as the quantum 
fluctuation of the ground state of the 'atoms' system. 

4. Numerical simulation 

In this section we numerically investigate how the quantal time evolution process into 
which the process of measurement is incorporated modifies the pure quantum motion 
of the kicked rotor in the phase space. To be realistic, the size of the coarse-grained 
domains 0, should be made semimacroscopic; in other words, 0, should contain a 
large number of the VNL cells. In numerical simulation it is, however, practically 
impossible to make 0, sufficiently large because the available size of the VNL cell is 
quite restricted ( h  2 (4x  lo2)-'). Therefore, we take the VNL cell itself as 0,. The 
process we examine in the numerical simulation is, therefore, the composite process 

O( t, Y")) = UR( v ' ~ ) )  (4.1) 

containing a set of random phases V ( ~ ) = { V ~ : } .  Note that a solution + ( t )  = 
Ill=, O(t,  v'")+(O) represents a sample solution for a given sequence of random 
variables ( Y('), . . . , v(')), which should be averaged over with the Gaussian statistical 
weight (see (3.19)): 

Henceforth v stands for the back-action parameter [ = T l ' " ' m /  h. 
We carried out numerical simulations with computer-generated Gaussian noise. 

The diffusion process, which is suppressed in quantum dynamics, is always recovered 
irrespective of the magnitude of the back-action parameter v, and the diffusion constant 
0, exhibits a characteristic variation with an increase in U. In figure 5 we depict the 
diffusion constant DQ as a function of v. For finite h there are two characteristic 
values of U: (1) for 0 < v < v I  ; the diffusion constant D,( v) increases gradually toward 
DcL; ( 2 )  for v l  < v < v2; DQ( v) agrees with DcL; (3) for v > vz DQ( v )  increases again 
and eventually reaches a limit D Q ( ~ ) .  v l  is the least value of v at which the classical 
diffusion is recovered and is closely related with the timescale T,. It is estimated as 
follows. The total random phase accumulated during the period 7 is estimated to be 
vtot- vh, and if v is more than 27r/J7';,  the phase accumulated at a von Neumann 
lattice site amounts to more than 27r before the quantum suppression mechanism 
begins to work. Thus v l  -27rlJ7';. 
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Figure 5. Dependence of the quantal diffusion constant DQ(v)  upon the back-action 
parameter Y. 

Above v2 the VNL randomisation process creates classical noise which causes D, 
to increase again. However, such an increment decreases with a decrease in h. In 
figure 6 we show how D Q ( a )  - DcL decreases with h. Evidently D Q ( a )  converges to 
DcL nicely as 

DQ(O0) - DCL = yfi (4.3) 

where y is a constant ( y = 7.0 for K = 2.0). Thus in the small limit of h + 0, the classical 
diffusion is recovered in a considerably wide range of perturbation strength, i.e. 
v 1  - T;"*- (Jlog hl)-1'2< v <  +a. We note that the diffusion behaviour is clearly 
observed even in a single-sample process. 

The phase randomisation on the VNL can be represented by the interaction Hamil- 
tonian 

0.44 

a a 

a 

a 

0.11 1.63 2 .Le 3.33 4.19 5.04 
Log h 

Figure 6. Convergence of Dp( U = a) to D,, as A is decreased. 
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where U,,,, is related to Y as wl ,T /h  = vIm (T is the period for which the interaction 
is applied). Such an interaction has no classical counterparts because the characteristic 
length of interaction over the phase space is the minimal length of quantum uncertainty, 
i.e. v%. This is the reason why the quantum diffusion rate for h + 0 approaches the 
classical value even for the ‘wild’ limit of perturbation strength, i.e. ulm( vim) + 00. (If 
the perturbation externally introduced has a classical counterpart, D, for h + 0 should 
agree with the classical diffusion rate of the perturbed system, which is much larger 
than that of the unperturbed system.) 

Although the phase randomisation on the VNL has no classical counterpart, the 
increment of DQ(co) from DcL for a finite h implies that the phase randomisation 
creates an equivalent classical noise. This is quite natural because the phase randomisa- 
tion on the VNL would classically introduce an uncertainty of O ( a )  in the phase 
space. Indeed the behaviour of (4.3) can be well simulated by adding classical noise 
of O ( a )  to the classical mapping rule (2.3) everywhere in the phase space. Thus we 
may say that the phase randomisation on the VNL releases the system from the quantum 
suppression, but it inevitably introduces a classical noise of quantum level, i.e. O ( f i ) .  

The fact mentioned above can be verified also from an observation of the momentum 
distribution function. We compare in figure 7 examples of the momentum distribution 
functions P ( p )  obtained for various processes. We emphasise that all the results are 
obtained for a single-sample process and no averaging procedures have been carried 
out. For the pure classical process (Cl)  the envelope of P( p) has a typical diffusion-type 
distribution, i.e. log P ( p ) a  - p z .  The oscillatory structure of P ( p )  is due to the 
existence of equally spaced resonance regions around the elliptic fixed points (p, e) = 
(2n7r, n ) ( n :  integer). For the pure quantum process (Ql), in contrast, the envelope 
of P( p )  decays like log P( p) a - p ,  which is a manifestation of Anderson localisation. 

- 4  - 3  - 2  1 2 3 4  
p / 2 n  

Figure 7. Momentum distribution functions P (  p )  = /(pllL( f ) ) I 2  obtained for various proces- 
ses: Q1, pure quantum process; 42, composite (=  pure quantum evolution+measurement) 
process; C1, pure classical process; C2, classical process driven by a classical noise of 
quantum level (see text). 
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(42) indicates a result for the composite process O( t )  = UR( t ) .  The distribution 
function certainly restores the classical form, but its oscillatory structure is less pro- 
nounced compared with the pure classical result. However, if we add a classical noise 
to the pure classical process ( C 2 ) ,  the P ( p )  agrees quite well with the result of the 
composite process O( t ) .  The intensity of ‘quantum’ noise is quite small (O(&))  and 
is adjusted in such a way that it may reproduce the relation (4.3). 

Finally we present clear evidence that the phase randomisation on the VNL restores 
the classical Liouville dynamics of the distribution function in the phase space. Figure 
8 shows the time evolution of the pattern of the phase space distribution function due 
to various evolution processes: ( a )  the pure quantum process U, ( b )  the composite 
quantum process O( t )  = UR( t )  and (c)  the classical process with classical noise. The 
phase space domains covered by the symbols and * indicate the regions of g P  with 
P = 0.9 and 0.5, respectively. Therefore, the former represents the region with non- 
negligible probability level, whereas the latter shows the region in which the main 
probability is concentrated. 

In the initial stage all the patterns of probability distributions move around ‘holes’ 
corresponding to the resonance regions filled with elliptic orbits around the fixed points 
( p ,  0)  = (2n7r, 7 r ) ( n :  integer). In ( a )  the probability distribution is confined in a region 
between the elliptic holes which persist forever. On the one hand, in case ( b ) ,  the 
pattern of probability distribution goes around the elliptic holes with ‘arms’ stretching 
outward. The latter motion leads to a diffusion of probability in the direction of p ,  
which eventually fills up the elliptic holes in the central region. This behaviour in ( b )  

t:70 t .140 t - 2 1 0  t =280 
e 

Figure 8. Time evolution of the distribution function in the phase space: ( a )  pure quantum 
process (Q1 in figure 7);  ( b )  composite process ( 4 2  in figure 7); ( c )  classical process 
driven by a classical noise of quantum level (C2 in figure 7).  
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agrees quite well with the classical evolution depicted in ( c ) .  We emphasise again that 
all the results mentioned above were obtained for a single-sample process. Averaging 
over many sample processes does not alter the essential features of our results. This 
is because a phase randomisation is done on a microscopic scale everywhere in the 
phase space. This fact implies that the system restores the classical motion in a single 
sequence of pure evolution followed by measurement processes?. 

We note that the coupling strength of the measurement system with the host system 
required to restore the Liouville dynamics may be quite small in the semiclassical limit 
fi + 0. Indeed the condition v > v 1  means that the collective coupling strength 5'"' 
is larger than v I / J T -  O( fi/log fi) .  

Before closing this section it should be emphasised that a recovery of the classical 
diffusion does not necessarily mean a restoration of the classical motion in the phase 
space. Whether the entire classical motion is restored or not depends upon the design 
of the measurement process. Indeed, we can construct an alternative measurement 
process on the basis of the 'squeezed' von Neumann lattice. The squeezed VNL consists 
of rectangular cells with different sizes 21rlL, and 2.rr/La in the B and p directions, 
respectively, where the condition (27r)*/ LaL, = h should be fulfilled. Consider the 
ultimate limit L,=  1, then the squeezed VNL basis is just the set of momentum 
eigenstates. Such a basis enables us to construct a measurement process for the 
momentum distribution function, and the back-action of such a process certainly 
restores something very similar to the classical chaotic diffusion; however, it fully 
disturbs the distribution in the B direction and eventually spoils the classical phase 
space distribution to be restored. 

5. Discussion 

There seems to be a serious discrepancy between classical chaotic dynamics and 
quantum chaotic dynamics. Such a discrepancy is due to quantum interference formed 
everywhere in the phase space by the stretching and folding dynamics inherent in the 
chaotic behaviour. This discrepancy is, however, removed by incorporating the 
measurement processes into the pure evolution process. We have proposed a fully 
quantum dynamical model of a quantum non-demolition measurement for the phase 
space distribution function. The pure dynamical process followed by the measurement 
process restores the classical Liouville dynamics in the phase space. The fact that such 
a composite process can reproduce the classical Liouville dynamics seems to be quite 
instructive. We are likely to suppose that the quantum dynamics approaches the 
classical dynamics by only taking the mathematical limit fi -j 0. This is not the case 
in particular for chaotic systems. Simultaneously, letting fi + 0, we have to make the 
system macroscopic. Then any dynamical perturbations due to the degrees of freedom 
which do not directly contribute to the chaotic motion appear and they destroy the 
mechanism for quantum suppression of chaos. The measurement process is an example 
of such a perturbation process. 

t Sarkar et a1 (1987) also examined the effect of 'measurement' process on the dynamics of the quantum 
kicked rotor. Contrary to our  result they report that the measurement process does not alter the essential 
feature of quantum motion. This is because their 'measurement' system is no more than a microscopic 
two-level system. Needless to say, a measurement system must be a macroscopic one composed of many 
degrees of freedom as proposed in the present work. 



3306 S Adachi, M Toda and K Zkeda 

The measurement process, however, seems to have a more profound significance. 
In classical dynamics the measurement for the physical quantities necessary to describe 
the classical motion seems to be implicitly assumed. It is, therefore, quite natural that 
the quantum process into which the measurement process is incorporated restores the 
classical dynamics in any case. As emphasised in § 4, the classical dynamics thus 
recovered is inevitably accompanied by a classical noise of quantum level. Therefore, 
there is in principle no classical system which is free from the influence of noise. 

In classical chaotic dynamics a small error in the initial condition is amplified 
continuously. This fact means that classical chaos has an ability of generating informa- 
tion (or entropy). However, in quantum chaos the generation of chaotic information 
terminates at a finite timescale. To maintain the ability of generating information we 
have to introduce ‘information’ from the external world. In our case such information 
is carried by the ground-state quantum fluctuation of ‘atoms’ constituting the measure- 
ment system. Although the amplitude of fluctuation carrying the information is quite 
small and of microscopic level, such a fluctuation is amplified through the mechanism 
of quantum chaos and finally destroys the quantum suppression mechanism to restore 
the ability of generating macroscopic uncertainty, i.e. the classical chaotic information. 
A basic question to be elucidated is in what process the microscopic information 
supplied by the measurement system is converted into the macroscopic chaotic informa- 
tion through the mechanism inherent in quantum chaos. 
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